
Leftmost Longest Regular Expression Matching
in Reconfigurable Logic

Kubilay Atasu

IBM Research - Zurich

kat@zurich.ibm.com

Abstract—Regular expression (regex) matching is an essential
part of text analytics and network intrusion detection systems.
The leftmost longest regex matching feature enables finding a
leftmost derivation of an input text and helps resolve ambiguities
that can arise in natural-language parsing. We show that leftmost
longest regex matching can be efficiently performed in a data-
flow pipeline by combining a recently proposed regex-matching
architecture with simple last-in first-out (LIFO) buffers and
streaming filter units, without creating significant back-pressure
or using costly sorting operations. The techniques we propose can
be used to compute overlapping and non-overlapping leftmost
longest and rightmost longest regex matches. In addition, we
show that the latency of the LIFO buffers can be hidden by
overlapping the processing of subsequent input streams, without
replicating the buffer space. Experiments on an Altera Stratix
IV FPGA show a 200-fold improvement of the processing rates
compared with a multithreaded software implementation.

I. INTRODUCTION

We live in a data-centric world. Data is driving discovery
in many fields, such as in healthcare analytics, cyber-security,
weather forecasting, and computational astrophysics etc. The
so-called big data has become a new natural resource, and
discovering insights in big data will be the key capability of
future computing platforms. The explosion in the size of the
datasets is leading to a paradigm shift in system design. The
need to achieve an efficient integration of massive data and
computation is resulting in a major re-thinking of memory
hierarchies and computing fabrics in datacentres. Data-centric
systems diverge from traditional computer architectures in
two main aspects. First, to improve the bandwidth of data
access, computation is being moved closer to the data [1].
Secondly, the energy consumption of datacentres is increasing
at an alarming rate, and energy costs start to exceed equip-
ment costs [2]. Scaling up datacentre performance simply
by increasing the number of processor cores is no longer
feasible economically. To improve both performance and en-
ergy efficiency and to exploit the data-access bandwidth more
efficiently, data-centric systems are increasingly relying on
heterogeneous compute resources, such as graphics-processing
units (GPUs) and field-programmable gate arrays (FPGAs).

The process of extracting information from large-scale
unstructured text is called text analytics and has applications
in business analytics, healthcare, and security intelligence.
Analyzing unstructured text and extracting insights hidden
in it at high bandwidth and low latency are computationally
challenging tasks. In particular, text analytics functions rely
heavily on regexs and dictionaries for locating named entities,

Fig. 1. Using FPGA-based accelerators for text analysis significantly
improves the query-processing rates and enables real-time response latencies.

e.g., person and company names, in free text [3], [4]. Typ-
ically, these regex and dictionary matching tasks, which are
implemented using finite-state machines, dominate the runtime
of text analytics systems [5]. The processing of finite-state-
machine-based tasks does not map well on general-purpose
processors [6]. However, FPGAs are an ideal medium for
executing such tasks because of the massive parallelism they
offer, which can be exploited at bit-level granularity [7].

Fig. 1 illustrates a use case of FPGA-based accelerators in
a business analytics platform that continuously collects news
entries from different data sources and indexes them using
a local news search engine. When a user submits a news
search query that contains a set of keywords, e.g., “IBM”
and “Switzerland”, the news search engine retrieves all news
entries that contain these keywords from its index. After that,
the relevant news entries are parsed word by word to identify
phrases that might, for instance, reveal a business expansion
strategy of “IBM” in “Switzerland”, e.g., the opening of a
new office or the announcement of a new strategic partnership.
This second stage acts as a second level of filtering, and only
those entries that contain interesting and useful information
are transferred to the user, preferably in almost real time. This
requires a deeper analysis of the news entries, and thus is
computationally much more intensive than a simple keyword
lookup in an index. When thousands of users submit news
search queries concurrently, this second stage becomes a com-
putational bottleneck. One way of eliminating this bottleneck
is to scale up the number of processor cores, which, however,
results in higher space and energy consumption and lower
reliability. A more promising solution can involve combining
an existing processor with a hardware accelerator, which boosts978-1-4673-9091-0/15/$31.00 c©2015 IEEE

both the performance and the energy efficiency and enables
real-time response latencies while preserving reliability.

Traditional regex-matching architectures based on reconfig-
urable nondeterministic finite-state automata [8], [9], [10] and
programmable deterministic finite-state automata [11], [12] do
not support features, such as start-offset reporting, capturing
groups, and leftmost longest matching. Architectures that can
compute a partially sorted stream of leftmost regex matches
were given in [13], [14], [15]. This work presents formal algo-
rithms and practical extensions to the architectures proposed
in [13], [14], [15] to enable the computation of overlapping
and non-overlapping, leftmost longest and rightmost longest
regex matches. In particular, we show that a fully sorted stream
of leftmost longest or rightmost longest regex matches can
be produced without performing explicit sorting. Producing
sorted results, in turn, enables execution of subsequent text-
specific operations in a streaming fashion in a more general
text analytics pipeline [16]. Our main contributions are:

1. A baseline architecture based on sorting and filtering
for computing leftmost longest regex matches

2. An optimized architecture wherein sorting operations
are replaced by simple LIFO operations

3. Adaptations of these architectures to compute non-
overlapping and rightmost longest regex matches

4. An FPGA-based implementation that achieves a 200-
fold speed-up over a multi-threaded software imple-
mentation of equivalent functionality

Section II defines the core concepts and terms used in
the remainder of this paper, and Section III covers related
work. Section IV introduces a general leftmost longest regex-
matching architecture based on sorting and filtering. Sec-
tion IV presents an optimized LIFO-based leftmost longest
regex matching architecture that does not perform any explicit
sorting. Section VI describes an extension to our optimized
architecture that enables computation of non-overlapping left-
most longest regex matches. Section VII then shows that over-
lapping and non-overlapping rightmost longest regex matches
can be computed by appropriately configuring our leftmost
longest regex matching architectures. Section VIII presents our
experiments and results, and Section IX our conclusions.

II. BACKGROUND

State-of-the-art text analytics systems [3], [4] compute a
span data structure for each regex match that indicates the
start-offset position and the end-offset position of the match
in the input text. To eliminate ambiguity, text analytics systems
use well-defined tie-break heuristics when dealing with over-
lapping matches. In particular, when several regex matches
that end at the same offset position exist, typically only the
span with the smallest start-offset value will be reported. This
technique is called leftmost regex matching heuristic. A more
common and less trivial heuristic is called leftmost longest
regex matching, which requires computation of all those regex
matches that are not contained in other regex matches [17].

Definition 1: Each regex match is associated with a span
(s, e), where s is the start-offset position and e the end-offset
position of the regex match.

Definition 2: Span (s0, e0) contains span (s1, e1) if (s1 ≥

s0) and (e1 ≤ e0).

Fig. 2. The matches of the regex a|aa|aaaa in the input string aaaa.
Out of the eight regex matches, only one is a leftmost longest match.

Definition 3: The leftmost regex match at offset position i

is the regex match with the smallest start-offset position value
that ends at offset position i.

Definition 4: A leftmost longest regex match is a regex
match that is not contained in any other regex match.

Corollary 1: A leftmost longest regex match is also a
leftmost regex match.

Assume that the regex a|aa|aaaa is matched against
the input stream aaaa. Fig. 2 shows the matches associated
with the subexpressions a, aa, and aaaa. There are eight
distinct matches, each one uniquely defined by a start-offset
position and an end-offset position. For instance, span (0, 1)
is associated with the match that starts at offset position 0
and ends at offset position 1. Out of these eight matches,
only four are leftmost matches, indicated by the solid curly
brackets. These are associated with spans (0, 0), (0, 1), (1, 2),
and (0, 3). For instance, the leftmost match at offset position 1
is indicated by span (0, 1), which has a smaller start offset than
the match associated with span (1, 1). Therefore, a leftmost
regex matcher should only report span (0, 1), suppressing
the match for span (1, 1). Similarly, at offset position 3, the
leftmost match is associated with span (0, 3), and the matches
associated with spans (2, 3) and (3, 3) must be suppressed.
Finally, only a single leftmost longest regex match exists in Fig.
2. It is associated with span (0, 3), which is not contained in
any other span. Note that all remaining leftmost matches (i.e.,
(0, 0), (0, 1), and (1, 2)) are contained in span (0, 3).

III. RELATED WORK

Span-based information-extraction systems [3], [4], [18],
[19] have long been popular. The backbone of such systems are
regex and dictionary matchers that operate on text documents
and produce a sorted stream of leftmost longest matches. To
the best of our knowledge, we propose the first fully hardware-
based solution that addresses this important problem.

Regex matching can be performed by first transforming
a regex into a nondeterministic finite-state automaton (NFA)
or into a deterministic finite-state automaton (DFA), and then
applying the input to the state-machine representation [20].
Sidhu and Prasanna showed that NFA structures can be mapped

very efficiently to the programmable logic blocks of Field-
Programmable Gate Arrays (FPGAs) [8], where each state
stores a 1-bit register that indicates whether the state is active
or not, and each state transition is implemented using a wire
that is routed from the source state to the destination state.

Methods to reduce the complexity of the next-state com-
putation logic using character-classifier tables are presented
in [9]. Dedicated shifter and counter circuits can be used
to derive a more compact representation of the next-state
computation logic [10], [11], [12]. Similarities between regexs
can be exploited to reduce resource consumption via resource
sharing [21], [22]. The throughput rate of NFA-based regex
matching can be improved by constructing automata that can
consume multiple characters per clock cycle [9], [21], [23].
Software-based approaches that combine NFAs and DFAs
to explore the trade-offs between memory consumption and
computational resources have also been explored [24], [25].
The approach of [26] decomposes complex regexs into a
sequence of simple strings that are matched using a DFA-based
architecture, and an NFA-based post-processor implemented in
reconfigurable logic ensures a correct ordering of the string
matches. In [27], a memory-based and programmable NFA
architecture that does not require hardware reconfiguration
is described. However, none of these architectures support
start-offset reporting, leftmost matching, or leftmost longest
matching. For the example given in Fig. 2, these architectures
would produce a match signal at each offset position, which
would reveal only the end-offset positions of the regex matches
without reporting the respective start-offset positions.

Supporting start-offset reporting in regex matching is com-
putationally complex, because regex matches that are associ-
ated with different start offset and end offset pairs can overlap
(see Fig. 2). Therefore, at any point in time, a regex matcher
has to keep track of multiple execution paths associated with
different start and end offsets. A reconfigurable hardware
accelerator for regex matching that supports start-offset re-
porting and leftmost matching is given in [13]. It exploits the
property that only a limited number of NFA states can be active
concurrently, and uses this information to build a network of
state machines that can perform a breadth-first search on the
input text. To support start-offset reporting, each state machine
stores a start offset value in its configuration registers, and
an optimized network enables the exchange of configuration
registers between state machines. Extensions to the architecture
of [8] to support start-offset reporting and leftmost matching
in a resource-efficient way are proposed in [14], [15]. It is
shown that a simple extension of [8] results in a significant
redundancy in the number of configuration registers and in
the leftmost match computation logic. Therefore, optimizations
that can eliminate such redundancies are also presented in [14],
[15]. However, a solution for the more widely used and chal-
lenging problem of leftmost longest regex match computation
is not provided neither in [13] nor in [14], [15].

IV. BASELINE ARCHITECTURE

This section describes our baseline architecture for comput-
ing leftmost longest regex matches, which combines a regex
matcher that supports start-offset reporting, a sorting unit, and
a containment filter, as shown in Fig. 3. The spans produced
by the regex matcher are initially unsorted and can be sorted

���������	
��
�����������������

�����
������

�������
����

��������
�����

	����������
������

������
�����

����������������
���������	
��

Fig. 3. The baseline architecture incorporates a regex matcher that supports
start-offset and end-offset reporting, a sorting unit, and a containment filter.

��� ��� ��� ���

� � � �

����	 ����	 ����	 ����	

����	 ����	 ����	

����	

�

���������������	�����	�����	�����	�

�������������������	�����	�����	�����	

������������������	�����	�����	�����	�

��������������������������	�����	�����	�����	

�������
�����������	

Fig. 4. The steps that lead to computation of the leftmost longest matches.

in increasing order of the start offsets, where the spans having
the same start offset are sorted in decreasing order of their end
offsets. Alternatively, the spans can be sorted in decreasing
order of the end offsets, where the spans having the same end
offset are sorted in increasing order of the start offsets. The
sorted spans are then fed into the containment filter, which
filters out all spans that are contained in others and produces
a sorted stream of spans that indicate the leftmost longest
regex matches. Fig. 4 shows the application of our sorting-
and filtering-based solution to the example given in Fig. 2.

The containment filter processes the sorted spans in a
streaming way, and stores only one span in its local registers.
Assume that the spans are sorted in increasing order of their
start offsets, where the spans having the same start offset are
sorted in decreasing order of the end offsets. When the first
span arrives at the containment filter, it gets stored in the local
registers without producing any output. When the next span
arrives and its end offset is smaller than or equal to the end
offset of the span stored in the local registers, the prior sorting
operation guarantees that its start offset will be greater than or
equal to the start offset of the span stored in the local registers.
Thus, the span stored in the local registers contains the new
span. The new span is filtered out and the span stored remains
unchanged. If however the end offset of the new span is greater
than the end offset of the span stored, the sorting guarantees
that the start offset of the new span will be greater than the start
offset of the span stored. Thus, neither span contains the other.
The span stored in the local memory is written to the output,
and the new span gets stored in the local registers. When the
end-of-stream signal arrives at the containment filter, the tuple
stored in the local registers is written to the output.

In general, the proposed architecture can produce multiple
and possibly overlapping spans as output. As an example,
assume that spans (0, 1), (2, 3), (2, 4), and (1, 5) are produced
by the regex matcher. After sorting, the spans are reordered as
follows: (0, 1), (1, 5), (2, 4), and (2, 3). The containment filter
stores the first span (0, 1) in its registers. When the second span
(1, 5) arrives, (0, 1) is written to output and (1, 5) is written to
the registers. (2, 4) and (2, 3) are not leftmost longest matches

Fig. 5. Architecture of the containment filter: i v, o v, and reg v stand for
input valid, output valid, and register valid; i d, o d, and reg d stand for input
data, output data, and register data; and i e, o e, and reg e stand for input
end-of-stream, output end-of-stream, and register end-of-stream, respectively..

and are filtered out because they are contained in (1, 5), i.e.,
they have a larger start offset and a smaller end offset than
(1, 5). When the end-of-stream signal arrives, (1, 5) is written
to the output. As a result, the two leftmost longest matches
are computed, namely, (0, 1) and (1, 5).

Alternatively, the spans produced by the regex matcher can
be sorted in decreasing order of the end offsets, where the
spans having the same end offset are sorted in increasing order
of the start offsets. In this case, it is sufficient to compare only
the start offsets. If the start offset of the new span is larger
than or equal to the start offset of the span stored, the new
span is filtered out and the span stored remains unchanged. If
the start offset of the new span is smaller than the start offset
of the span stored, the span stored in the registers is written
to the output, and the new span gets registered.

Figure 5 shows the hardware architecture of the contain-
ment filter. The architecture uses two 32 bit comparison units
to check 1) if the start-offset value of the span registered is
smaller than or equal to the start-offset value of the input span,
and 2) if the end-offset value of the span registered is greater
than or equal to the end-offset value of the input span. Such
an architecture functions correctly when the input spans are
sorted in either direction, i.e., in the increasing order of start
offsets or in the decreasing order of end offsets. However, one
of the comparison units and the subsequent and gate (labeled
filter) can be eliminated when the overall design guarantees
that the input spans will always be sorted in a single direction.

V. OPTIMIZED ARCHITECTURE

This section describes an optimized leftmost longest regex
matching architecture that does not use a sorter. Note that
although high-throughput FPGA-based sorter implementations
exist [28], they incur a relatively high resource consumption
compared with basic regex matcher implementations. Thus,
eliminating the sorting operations is crucial for improving the
scalability of the leftmost longest regex matching architecture.

We exploit two key properties to eliminate the redundan-
cies that exist in the baseline architecture. Firstly, based on
Corollary 1, we observe that to locate the leftmost longest
matches, it is not necessary to generate all possible regex
matches. It is sufficient to produce the set of leftmost matches
and look for the leftmost longest matches inside this set.

��������
��	�
�������

�����
���
��

���������
����

��������
�����

����������
������

������
�����

������������	���
��	�
�������

Fig. 6. Leftmost longest regex matching without sorting.

��� ��� ��� ���

� � � �

����	 ����	 ����	 ����	

����	 ����	 ����	

����	

�����������������	�����	�����	�����	

���������������

���������������������	�����	�����	�����	

��������������������

�������
�����������	

Fig. 7. The steps that lead to leftmost and leftmost longest regex matches.

Secondly, the existing architectures that support leftmost regex
matching [13], [14] produce partially sorted results. These
architectures process the input stream character by character,
and at each end offset position that results in a regex match,
they report only the regex match with the smallest start offset,
i.e., the leftmost regex match. That approach guarantees that
the regex matcher will produce the start and end offset tuples
in increasing order of the end offsets, and that for each end
offset there will be only a single start offset. If we simply
invert the order of the spans produced by such a leftmost regex
matcher, the spans will already be sorted in decreasing order
of the end offsets, and there will be no two spans that have the
same end offset, but different start offsets. Therefore, inverting
the order of the spans produced by the regex matcher creates
a sorted stream of spans that can be consumed directly by
a containment filter. Fig. 6 depicts our optimized architecture,
and Fig. 7 shows its application to the example given in Fig. 2.

Consider again spans (0, 1), (2, 3), (2, 4), and (1, 5), which
can be produced by a leftmost regex matcher. Note that the
spans are produced in increasing order of the end offsets. After
inverting the order of the spans, we get (1, 5), (2, 4), (2, 3), and
(0, 1). The containment filter removes spans (2, 4) and (2, 3),
and spans (1, 5) and (0, 1) remain as a result. This result is
sorted in decreasing order of both start and end offsets. An
optional inversion can be applied on this result to produce a
final output that is sorted in increasing order of both start and
end offsets, i.e., (0, 1), and (1, 5).

A. A Latency-Hiding Inversion Unit

The inversion unit can be implemented using simple LIFO
buffers. However, it will not produce any output until the
leftmost regex matcher produces an eos (end-of-stream) signal,
and the latency of this can significantly reduce the throughput
rate of the optimized architecture. To hide this latency, sub-
sequent input streams (i.e., text documents in our setup) can
be executed in a pipelined fashion within the processing chain
shown in Fig. 6. As an example, as soon as the leftmost regex
matcher produces the eos signal for stream i, the inversion unit
can start accepting new spans associated with stream i + 1,
while forwarding the inverted spans associated with stream i

���������

��	������

��	
����

��
����

��	������

���������

���������

��	������

��
����

��	
����

���	�
��
�

�����������	

����������	���

�	���	�
��
�

��	
�����	���

����������	���

���	�
��
�

��	
�����	���

����������	���

��	
����

��
����

�	���	�
��
�

��	
�����	���

��������������

Fig. 8. A latency-hiding inversion unit: overlapping read and write latencies.

to the containment unit. Such an approach can be implemented
without doubling the buffer space as shown in Fig. 8.

The architecture given in Fig. 8 alternates between forward
and backward mode. A start pointer marks the start position
of the data that is being written to the LIFO buffer, and a
write pointer gets incremented (or decremented, depending on
the mode) when a new span arrives from the leftmost regex
matcher. The start pointer and the write pointer values are
initially equal, and both point to the same end of the buffer
space. The end position of the data that is being read from the
LIFO buffer is marked by an end pointer, and a read pointer is
decremented (or incremented, depending on the mode) when
a new span gets transfered to the containment filter. When an
eos signal arrives, the inversion unit 1) copies the write pointer
into the read pointer and the start pointer into the end pointer,
2) switches from forward to backward mode (or vice versa),
and 3) initializes the start pointer and the write pointer.

The architecture shown in Fig. 8 only produces back-
pressure (i.e., stalls the processing pipeline) if the write pointer
of stream i + 1 is equal to the read pointer of stream i,
which means that there is no room left for new entries in the
allocated buffer space. However, this situation happens very
rarely because the read buffer typically is flushed very quickly,
and the write buffer receives new entries rather infrequently.
The entries associated with stream i are transferred to the
containment unit very quickly, e.g., at a rate of one span per
clock cycle, whereas the leftmost regex matcher typically will
not produce a new result per clock cycle for stream i + 1.

VI. COMPUTING NON-OVERLAPPING MATCHES

The architectures presented so far can produce leftmost
longest regex matches that overlap. In this section, we there-
fore present modifications to these architectures that enable
computation of non-overlapping leftmost longest matches.

Definition 5: Two spans (s0, e0) and (s1, e1) overlap if
(s1 > s0) and (e1 > e0) and (s1 ≤ e0) or if (s0 > s1) and
(e0 > e1) and (s0 ≤ e1).

Definition 6: The non-overlapping leftmost regex match at
offset position i is the regex match with the smallest start
offset that ends at position i and that does not overlap with
any leftmost regex match that ends at a position smaller than
i.

����������		
������������	�����

�����������������������

���������������

�����
�����
����������������������������

��������������������

�����
����
���������

��� ��� ��� ���

� � � �

����� ����� ����� �����

����� ����� �����

�����

Fig. 9. Non-overlapping leftmost and leftmost longest regex matches.

Fig. 10. Non-overlapping leftmost longest match computation without sorting.

Definition 7: A non-overlapping leftmost longest regex
match is a non-overlapping leftmost regex match that is not
contained in any other non-overlapping leftmost regex match.

One way of computing the non-overlapping leftmost
longest matches is to produce all possible regex matches,
sort the associated spans, and filter out overlapping spans.
However, such a brute-force approach can be avoided by
adapting the optimized architecture described in Section V
to produce first the non-overlapping leftmost matches and
then the non-overlapping leftmost longest matches. Note that
the non-overlapping leftmost regex matches can be computed
recursively based on Definition 6. Fig. 9 illustrates the non-
overlapping leftmost regex matches for the example given in
Fig. 2. Span (0, 0) is the only regex match at offset position 0,
and it does not overlap with any prior span. Thus, it is a non-
overlapping leftmost match. There are two regex matches that
end at offset position 1: (0, 1) and (1, 1). Note that based on
Definition 6, (0, 1) does not overlap with (0, 0). Therefore, it
is a non-overlapping leftmost match, and it suppresses (1, 1).
There are two regex matches that end at offset position 2:
(1, 2) and (2, 2). (1, 2) must be suppressed because, based
on Definition 6, it overlaps with (0, 1). Because (1, 2) is
suppressed, (2, 2) does not get suppressed, and is reported
as a non-overlapping leftmost regex match. Such a scheme
can be implemented 1) by iteratively computing the leftmost
matches starting from offset position 0 and incrementing the
offset counter after each consumed character, and, in the case
of a regex match that ends at offset position i and is associated
with a span (s0, i), 2) by deactivating all ongoing searches that
have a start offset greater than s0.

Once an architecture that produces the non-overlapping
leftmost regex matches is available, it can be combined with
an inversion unit and a containment filter to produce the non-
overlapping leftmost longest matches, as shown in Fig. 10.

VII. COMPUTING RIGHTMOST LONGEST MATCHES

The problem of rightmost longest matching arises when
parsing the text from right to left rather than from left to
right. We show that rightmost longest regex matches can be

��������
��	�
�������
��������������

��������
����� ���������

����

��	������
����� ����������

������

������
�����

��	����������	���
��	�
�������

Fig. 11. Rightmost longest matching using leftmost longest matching.

��� ��� ��� ���

� � � �

����	 ����	 ����	 ����	

����	 ����	 ����	

����	

�������������������	�����	�����	�����	

���������������

����
�����
�������������	�����	�����	�����	

��������������������

����
������
����������	

Fig. 12. The steps that lead to rightmost and righmost longest regex matches.

computed using a leftmost longest regex matching architecture
by making only a small change in the way that architecture
operates.

Definition 8: The rightmost regex match at offset position
i is the regex match with the largest end offset that starts at
offset position i.

Definition 9: A rightmost longest regex match is a regex
match that is not contained in any other regex match.

Corollary 2: A rightmost longest regex match is also a
rightmost regex match.

Definition 10: The non-overlapping rightmost regex match
at offset position i is the regex match with the largest end offset
that starts at position i and does not overlap with a rightmost
regex match starting at a position greater than i.

Definition 11: A non-overlapping rightmost longest regex
match is a non-overlapping rightmost regex match that is not
contained in any other non-overlapping rightmost regex match.

First, to produce the rightmost regex matches, the input text
is parsed from right to left, i.e., the order in which the input text
gets processed is inverted (see Fig. 11). Second, an inverted
NFA is constructed using standard techniques. For instance,
if the regex pattern is defined to be abc, the inverted NFA
recognizes cba. We apply the inverted input text to a leftmost
regex matcher that implements the inverted NFA of the regex.
This combination produces the rightmost regex matches as
shown in Fig. 12. These rightmost regex matches are fed into
an inversion unit and then into a containment filter, as usual,
to produce the rightmost longest regex matches.

The set of rightmost regex matches is not necessarily equal
to the set of leftmost regex matches. However, the set of
rightmost longest regex matches is always equal to the set
of leftmost longest regex matches. In contrast, the set of non-
overlapping rightmost longest regex matches does not have
to be equal to the set of non-overlapping leftmost longest
regex matches. Therefore, the choice of leftmost vs. rightmost
matching and the choice of non-overlapping vs. overlapping
matching can have a significant impact on the results produced.

The architecture proposed in this work supports all resulting
combinations very efficiently in field-programmable logic.

VIII. EXPERIMENTS

Our designs were synthesized using the Quartus II 12.1
software, for an Altera Stratix IV GX530 FPGA. We used the
maximum effort settings of the synthesis tool. The start-offset
and the end-offset positions stored in the span data structures
were 32 bits wide in our experiments.

The logic resource consumption of the inversion unit and
the containment filter was minimal. These two units together
consumed approx. 100 combinational ALUTs and approx. 90
dedicated registers (bits of storage), and achieved a clock
frequency of approx. 300 MHz. Thus, based on the results
given in [14], the clock frequency of the overall design is
limited by the leftmost regex matcher. However, an overall
clock frequency of 250 MHz appears to be realistic in most
practical use cases. Furthermore, based on the results given
in [14], the leftmost regex matching logic on average consumes
around 300–500 ALUTs and registers for a given regex.
Therefore, supporting leftmost longest regex matching on top
of an architecture that supports leftmost regex matching results
in a 20%–30% increase in logic resource consumption.

In our current design, each regex owns a dedicated in-
version unit, and each inversion unit consumes two M9K
blocks (256 × 36 bits each). However, it is possible to design
inversion units that are shared across multiple regex engines.
Also, our current design does not implement an external
memory interface to deal with overflow conditions, but the
256-element-deep LIFO buffers are more than sufficient for
typical text-analytics use cases. For instance, the size of Twitter
messages does not exceed 140 bytes. Therefore, they can
theoretically produce a maximum number of 140 leftmost
or rightmost matches. Similarly, the size of news entries is
typically in the range of 500 bytes to 4 kB. In such small
documents, more than 256 regex matches will rarely be found.
Note also that the target FPGA contains 1280 M9K blocks.
Therefore, the proposed design can support up to 500–600
regexs with leftmost longest matching or rightmost longest
matching support on the target FPGA using the M9K blocks.

Experiments were performed using a regex set with 25
regexs from the text analytics domain. The software throughput
measurements were obtained using a scale-out version of the
SystemT text analytics library [3] on a 12-core Intel R© Xeon R©

E5-2630 processor, running at 2.6 GHz. Note that the SystemT
library is implemented in Java R©, and its regular expression
matcher uses a backtracking-based algorithm to implement the
leftmost longest matching semantics. Fig. 13 shows that the
throughput rates achieved by the software library is limited to
a few MB/s for the regex set evaluated. We observe that the
software throughput rate does not improve beyond 16 threads,
and the highest throughput rate achieved by the software
library is around 4.3 MB/s.

In contrast, a single instance of our FPGA-based leftmost
longest regex matcher can achieve a throughput rate of up
to 250 MB/s because our design is clocked at 250 MHz
and consumes a single input byte per clock cycle. Multiple
instances (threads) of our design can be instantiated on the
target FPGA to process multiple independent text documents

� � � � � � � � 	 �
 �� �� �� �� �� ��

��

�

�

�

�

�

��

�

���������

�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
��
�

Fig. 13. Comparing software (SW) and hardware (HW) throughput rates.

in parallel. When instantiating four hardware threads, we mea-
sured a throughput rate of 0.95 GB/s when using the FPGA,
which translates into a more than 200-fold improvement of
the processing rates with respect to the SW implementation.
Assuming that a 4 GB/s bus interface is available, a simple
scaling of the resource consumption figures implies that up to
16 hardware threads can be accomodated on the target FPGA.
This translates into a more than 800-fold improvement of the
processing rates with respect to the software implementation.

IX. SUMMARY

This paper provides novel theoretical and practical results
for improving the efficiency of leftmost longest regex matching
on field-programmable devices. First, we present a baseline
architecture that relies on sorting and filtering to compute the
leftmost longest regex matches. Then, we present an optimized
architecture that eliminates the costly sorting operations. We
also cover extensions of our optimized architecture to support
computation of non-overlapping matches and rightmost longest
regex matches. Our experiments on a regex set from the text
analytics domain demonstrate a more than 200-fold improve-
ment of the processing rates compared with the multithreaded
reference software implementation. Our current and future
work includes extending our optimized architecture to support
external memory interfaces and shared LIFO buffers, and
evaluating the energy-efficiency of our hardware accelerators.

ACKNOWLEDGEMENTS

I would like to thank C. Bolliger from IBM Research -
Zurich for her language-related corrections and comments, and
F. R. Reis, L. Chiticariu, and H. Zhu from IBM Research -
Almaden for the technical discussions that led to this work.

Intel and Intel Xeon are registered trademarks trademarks of Intel Cor-

poration or its subsidiaries in the United States and other countries. Java is a

registered trademark of Oracle and/or its affiliates. Other product or service

names may be trademarks or service marks of IBM or other companies.

REFERENCES

[1] T. Agerwala and M. Perone. Data centric systems: The next paradigm
in computing. Keynote at the International Conference on Parallel
Processing, Sep. 2014.

[2] J. G. Koomey. Growth in data center electricity use 2005 to
2010. A report by Analytics Press, source: http://www. analytics-
press.com/datacenters.html, Aug. 2011.

[3] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, and
H. Zhu. SystemT: A system for declarative information extraction.
SIGMOD Record, 37(4):7–13, 2008.

[4] W.-D. Zhu et al. IBM Watson Content Analytics: Discovering Action-

able Insight from Your Content. IBM Redbooks, 2014.

[5] R. Polig et al. Giving text analytics a boost. IEEE Micro, 34(4):6–14,
July 2014.

[6] K. Asanovic et al. A view of the parallel computing landscape.
Commun. ACM, 52(10):56–67, October 2009.

[7] A. Putnam et al. A reconfigurable fabric for accelerating large-scale
datacenter services. In Proc. ISCA, pages 13–24, June 2014.

[8] R. Sidhu and V. K. Prasanna. Fast regular expression matching using
FPGAs. In Proc. FCCM ’01, pages 227–238, 2001.

[9] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna. Compact architecture
for high-throughput regular expression matching on FPGA. In Proc.

ANCS, pages 30–39, 2008.

[10] I. Sourdis, J. Bispo, J. M. Cardoso, and S. Vassiliadis. Regular
expression matching in reconfigurable hardware. J. Signal Process.

Syst., 51(1):99–121, 2008.

[11] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese. Curing
regular expressions matching algorithms from insomnia, amnesia, and
acalculia. In Proc. ANCS, pages 155–164, 2007.

[12] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the big bang: Fast
and scalable deep packet inspection with extended finite automata. In
Proc. SIGCOMM ’08, pages 207–218, 2008.

[13] K. Atasu, R. Polig, C. Hagleitner, and F. R. Reiss. Hardware-accelerated
regular expression matching for high throughput text analytics. In Proc.

FPL, pages 289–295, 2013.

[14] K. Atasu. Resource-efficient regular expression matching for text
analytics. In Proc. ASAP, pages 1–8, 2014.

[15] K. Atasu. Feature-rich regular expression matching accelerator for text
analytics. In Journal of Signal Processing Systems, to appear, 2015.

[16] R. Polig, K. Atasu, H. Giefers, and L. Chiticariu. Compiling text
analytics queries to fpgas. In Proc. FPL, pages 427–432, 2014.

[17] C. L. A. Clarke and G. V. Cormack. On the use of regular expressions
for searching text. ACM Trans. Program. Lang. Syst., 19(3):413–426,
May 1997.

[18] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An algebra for
structured text search and a framework for its implementation. The

Computer Journal, 38:43–56, 1995.

[19] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Spanners: A
formal framework for information extraction. In Proc. 32nd Symposium

on Principles of Database Systems, PODS ’13, pages 37–48, 2013.

[20] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison Wesley, 2000.

[21] Z. K. Baker and V. K. Prasanna. A methodology for synthesis of
efficient intrusion detection systems on FPGAs. In Proc. FCCM ’04,
pages 135–144, 2004.

[22] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang. Optimization of
pattern matching circuits for regular expression on FPGA. IEEE Trans.

Very Large Scale Integr. Syst., 15(12):1303–1310, 2007.

[23] N. Yamagaki, R. P. S. Sidhu, and S. Kamiya. High-speed regular
expression matching engine using multi-character NFA. In Proc. FPL,
pages 131–136, 2008.

[24] M. Becchi and P. Crowley. A hybrid finite automaton for practical deep
packet inspection. In Proc. CoNEXT, 2007.

[25] Y.-H. E. Yang and V. K. Prasanna. Space-time tradeoff in regular
expression matching with semi-deterministic finite automata. In Proc.

INFOCOM, pages 1853–1861, 2011.

[26] H. Nakahara, T. Sasao, and M. Matsuura. A regular expression matching
circuit based on a decomposed automaton. In Proc. ARC, pages 16–28,
2011.

[27] D. Pao, N. Lam Or, and R. C. C. Cheung. A memory-based NFA
regular expression match engine for signature-based intrusion detection.
Computer Commun., 36(10-11):1255–1267, 2013.

[28] D. Koch and J. Torresen. FPGAsort: A high performance sorting
architecture exploiting run-time reconfiguration on FPGAs for large
problem sorting. In Proc. FPGA, pages 45–54, 2011.

